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Abstract

We consider conservation laws with source terms in a bounded domain with Dirichlet boundary condi-
tions. We first prove the existence of a strong trace at the boundary in order to provide a simple formulation
of the entropy boundary condition. Equipped with this formulation, we go on to establish the well-posedness
of entropy solutions to the initial–boundary value problem. The proof utilizes the kinetic formulation and
the averaging lemma. Finally, we make use of these results to demonstrate the well-posedness in a class
of discontinuous solutions to the initial–boundary value problem for the Degasperis–Procesi shallow water
equation, which is a third order nonlinear dispersive equation that can be rewritten in the form of a nonlinear
conservation law with a nonlocal source term.
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1. Introduction

In this article we consider scalar conservation laws with source terms in a bounded open
subset Ω ⊂ R

d with C2 boundary:

∂tu + divx A(u) = S(t, x,u), (t, x) ∈ Q := (0, T ) × Ω, (1)

where T > 0 is a fixed final time and the flux function A ∈ C2 satisfies the genuine nonlinearity
condition

L
({

ξ
∣∣ τ + ζ · A′(ξ) = 0

}) = 0, for every (τ, ζ ) �= (0,0), (2)

where L is the Lebesgue measure.
The source term satisfies the following conditions:

S ∈ L∞(Q × R), S(t, x, ·) ∈ C1(R),
∣∣S(t, x,u) − S(t, x, v)

∣∣ � C|u − v|, (3)

where the last two conditions hold for a.e. (t, x) ∈ Q and C > 0 is a constant.
As usual, we only deal with entropy solutions, namely those that fulfill in the sense of distri-

butions on Q the inequality

∂tη(u) + divx q(u) − η′(u)S(t, x,u) � 0 (4)

for every convex C2 function η and related entropy flux defined by

q ′ = A′η′.

We are interested in the well-posedness in L∞ of the initial–boundary value problem for (1), in
which case we impose the initial data
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u(0, ·) = u0 ∈ L∞(Ω) (5)

and the Dirichlet boundary data

u|Γ = ub ∈ L∞(Γ ), (6)

where Γ := (0, T ) × ∂Ω . Of course, this Dirichlet condition has to be interpreted in an appro-
priate sense (see below) and this in turn requires an entropy solution to possess boundary traces
(which herein will be understood in a strong sense).

A BV well-posedness theory for conservation laws with Dirichlet boundary conditions was
first established by Bardos, le Roux, and Nédélec [2], and later extended by Otto [24] to the L∞
setting, for which boundary traces do not exist in general, a fact that complicates significantly the
notion of solution and the proofs. For genuinely nonlinear fluxes and domains whose boundaries
satisfy a mild regularity assumption, Vasseur [31] showed that L∞ entropy solutions always have
traces at the boundaries. Similar results hold without imposing a genuine nonlinearity condition,
cf. Panov [25,26] and Kwon and Vasseur [17]. Consequently, for genuinely nonlinear fluxes, the
L∞ case can be treated as in [2], i.e., the more complicated notion of entropy solution used by
Otto can be avoided, see Kwon [16].

To define traces on the boundary Γ we use the concept of a “regular deformable bound-
ary” (see for instance Chen and Frid in [3]). For any domain Ω with C2 boundary, there
exists at least one ∂Ω-regular deformation. Given any open subset K̂ of ∂Ω , we refer to
a mapping ψ̂ : [0,1] × K̂ → Ω as a K̂-regular deformation provided it is a C1 diffeomor-
phism and ψ̂(0, ·) ≡ I

K̂
with I

K̂
denoting the identity map over K̂ . Let us now define the set

K := (0, T ) × K̂ and the function ψ(s, ẑ) := (t̂ , ψ̂(s, x̂)) where ẑ := (t̂ , x̂) ∈ K . Then, obvi-
ously, ψ(s, ẑ) is K-regular deformation with respect to Γ . Let us denote by n̂s the unit outward
normal field of the deformed boundary ψ̂({s} × ∂Ω). We also write ns = (0, n̂s) and n = (0, n̂).
Notice that n̂s converges strongly to n̂ when s goes to 0.

Our first main result is the following theorem.

Theorem 1.1. Let Ω ⊂ R
d be a regular open set with C2 boundary. Assume that (3) holds and

that the flux function A ∈ C2(R) verifies (2). Consider any function u ∈ L∞((0, T )×Ω) obeying
(1) and (4) in (0, T ) × Ω . Then

• there exists uτ ∈ L∞((0, T ) × ∂Ω) such that for every Γ -regular deformation ψ and every
compact set K � Γ there holds

ess lim
s→0

∫
K

∣∣u(ψ(s, ẑ)
)− uτ (ẑ)

∣∣dσ(ẑ) = 0,

where dσ denotes the volume element of (0, T ) × ∂Ω;
• there exists uτ ∈ L∞(Ω) such that for every compact set K � Ω there holds

ess lim
t→0

∫
K

∣∣u(t, x) − uτ (x)
∣∣dx = 0.
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In particular, the trace uτ is unique and, for any continuous function F , F(u) also possesses a
trace and [

F(u)
]τ = F

(
uτ

)
.

The proof of this theorem is found in Section 2. More precisely, in this section we prove the
first part of Theorem 1.1. The second part can be proved using the same method, so we omit
the details. The method of proof follows along the lines of Vasseur [31], utilizing the blow-up
method, the kinetic formulation developed by Lions, Pethame, and Tadmor [18], and a version
of the averaging lemma (see Perthame and Souganidis [29]). An alternative proof can be given
using Panov’s H -measure approach, cf. [26], which moreover requires a genuine nonlinearity
condition that is less restrictive than (2).

Having settled the existence of strong boundary traces, we can now turn to the choice of en-
tropy boundary condition. Instead of working with the original condition due to Bardos, le Roux,
and Nédélec [2], we shall instead employ the following equivalent boundary condition introduced
by Dubois and LeFloch [11], which is well defined in L∞ thanks to Theorem 1.1:[

q
(
uτ

)− q(ub) − η′(ub)
(
A
(
uτ

)− A(ub)
)] · n̂ � 0, (7)

where Bτ means the trace of B on Γ = (0, T ) × ∂Ω and n̂ is the unit outward normal to ∂Ω

with n = (0, n̂).
Our second main result is the well-posedness of entropy solutions to the initial–boundary

value problem (1), (5), and (6), with the boundary condition (6) being interpreted in the sense of
(7).

Theorem 1.2. Let Ω ⊂ R
d be a regular open set with C2 boundary. Assume that the source term

S(t, x,u) obeys (3) and that the flux function A ∈ C2(R) verifies (2). Let u0 ∈ L∞(Ω). Then
there exists a unique entropy solution u ∈ L∞(Q) verifying (1), (4), (5), and (7).

This theorem is proved in Section 3. As in [16], the uniqueness argument utilizes the Dubois–
LeFloch boundary condition (7) written in a kinetic form. Recently Ammar, Carrillo, and Wit-
tbold [1] showed the well-posedness of conservation laws with source terms by using a more
general notion of entropy solutions containing the concept of weak boundary condition intro-
duced by Otto [24]. In contrast to the Kruzhkov approach employed in [1], our proof utilizes
a good kinetic formulation of the boundary condition allowing for an adaption of Perthame’s
“kinetic” uniqueness proof [27,28].

In Section 4 we apply Theorems 1.1 and 1.2 to investigate the well-posedness of the initial–
boundary value problem for the so-called Degasperis–Procesi equation

∂tu − ∂3
txxu + 4u∂xu = 3∂xu∂2

xxu + u∂3
xxxu, (t, x) ∈ (0, T ) × (0,1), (8)

augmented with the initial condition

u(0, x) = u0(x), x ∈ (0,1), (9)

and the boundary data
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u(t,0) = g0(t), u(t,1) = g1(t), t ∈ (0, T ),

∂xu(t,0) = h0(t), ∂xu(t,1) = h1(t), t ∈ (0, T ). (10)

We assume that

u0 ∈ L∞(0,1), u0(0) = g0(0), u0(1) = g1(0),

g0, g1 ∈ H 1(0, T ), h0, h1 ∈ L∞(0, T ). (11)

Degasperis and Procesi [10] deduced (8) from the following family of third order dispersive
nonlinear equations, indexed over six constants α,γ, c0, c1, c2, c3 ∈ R:

∂tu + c0∂xu + γ ∂3
xxxu − α2∂3

txxu = ∂x

(
c1u

2 + c2(∂xu)2 + c3u∂2
xxu

)
.

Using the method of asymptotic integrability, they found that only three equations within this
family were asymptotically integrable up to the third order: the KdV equation (α = c2 = c3 = 0),
the Camassa–Holm equation (c1 = − 3c3

2α2 , c2 = c3
2 ), and one new equation (c1 = − 2c3

α2 , c2 = c3),
which properly scaled reads

∂tu + ∂xu + 6u∂xu + ∂3
xxxu − α2

(
∂3
txxu + 9

2
∂xu∂2

xxu + 3

2
u∂3

xxxu

)
= 0. (12)

By rescaling, shifting the dependent variable, and finally applying a Galilean boost, Eq. (12) can
be transformed into the form (8), see [8,9] for details.

Degasperis, Holm, and Hone [9] proved the integrability of (8) by constructing a Lax pair.
Moreover, they provided a relation to a negative flow in the Kaup–Kupershmidt hierarchy by a
reciprocal transformation and derived two infinite sequences of conserved quantities along with a
bi-Hamiltonian structure. Furthermore, they showed that the Degasperis–Procesi equation are en-
dowed with weak (continuous) solutions that are superpositions of multipeakons and described
the integrable finite-dimensional peakon dynamics. An explicit solution was also found in the
perfectly antisymmetric peakon–antipeakon collision case. Lundmark and Szmigielski [21], us-
ing an inverse scattering approach, computed n-peakon solutions to (8). Mustafa [23] proved
that smooth solutions have infinite speed of propagation, that is, they lose instantly the property
of having compact support. Blow-up phenomena have been investigated in, for example, [36].
Regarding the Cauchy problem for the Degasperis–Procesi equation (8), Escher, Liu, and Yin
have studied its well-posedness within certain functional classes in a series of papers [12–14,19,
32–35].

The approach taken in the papers just listed emphasizes the similarities between the
Degasperis–Procesi equation and the Camassa–Holm equation, and consequently the main focus
has been on (weak) continuous solutions. In a rather different direction, Coclite and Karlsen [5–7]
and Lundmark [20] initiated a study of discontinuous (shock wave) solutions to the Degasperis–
Procesi equation (8). In particular, the existence, uniqueness, and stability of entropy solutions
of the Cauchy problem for (8) is proved in [5–7].

When it comes to initial–boundary value problems for the Degasperis–Procesi equation much
less is known. The first results in that direction are those of Escher and Yin [14,37], which
apply to continuous solutions. To encompass discontinuous solutions we shall herein extend the
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approach of [5–7], relying on Theorems 1.1 and 1.2 above. Following [5] we rewrite (8), (9),
(10) as a hyperbolic–elliptic system with boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu + u∂xu + ∂xP = 0, (t, x) ∈ (0, T ) × (0,1),

−∂2
xxP + P = 3

2
u2, (t, x) ∈ (0, T ) × (0,1),

u(0, x) = u0(x), x ∈ (0,1),

u(t,0) = g0(t), u(t,1) = g1(t), t ∈ (0, T ),

∂xP (t,0) = ψ0(t), ∂xP (t,1) = ψ1(t), t ∈ (0, T ),

(13)

where

ψ0 = −g′
0 − g0h0, ψ1 = −g′

1 − g1h1. (14)

Let us give a heuristic motivation for the equivalence between (15) and (13). From (8), provided
the involved functions are sufficiently smooth,(

1 − ∂2
xx

)
(∂tu + u∂xu + ∂xP ) = 0, (15)

since, by (14), formally the trace of ∂tu+u∂xu+∂xP vanishes at x = 0 and x = 1, we can invert
the differential operator 1 − ∂2

xx and pass from (15) to (13).
In the case g0 = g1 = 0 we do not need any boundary condition on ∂xu, indeed from (14) we

have ψ0 = ψ1 = 0.
The boundary conditions for the P -equation in (13) are of Neumann type. Let G = G(x,y) be

the Green’s function of the operator 1 − ∂2
xx with homogeneous Neumann boundary conditions

on (0,1) and let Q = Q(t, x) be the solution of{−∂2
xxQ + Q = 0, (t, x) ∈ (0, T ) × (0,1),

∂xQ(t,0) = ψ0(t), ∂xQ(t,1) = ψ1(t), t ∈ (0, T ).

The function P has a convolution structure

P(t, x) = P u(t, x) := 3

2

1∫
0

G(x,y)u2(t, y) dy + Q(t, x),

and (13) can be written as a conservation law with a nonlocal source

∂tu + ∂x

(
u2

2

)
= −∂xP

u = −3

2

1∫
0

∂xG(x, y)u2(t, y) dy − ∂xQ(t, x). (16)

Due to the regularizing effect of the elliptic equation in (13) we have that

u ∈ L∞(
(0, T ) × (0,1)

) ⇒ P u ∈ L∞(
0, T ;W 2,∞(0,1)

)
. (17)

Therefore, if a map u ∈ L∞((0, T ) × (0,1)) satisfies, for every convex map η ∈ C2,
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∂tη(u) + ∂xq(u) + η′(u)∂xP
u � 0, q(u) =

u∫
ξη′(ξ) dξ, (18)

in the sense of distributions, then Theorem 1.1 provides the existence of strong traces uτ
0 , uτ

1 on
the boundaries x = 0,1, respectively.

We say that u ∈ L∞((0, T ) × (0,1)) is an entropy solution of the initial–boundary value
problem (8), (9), (10) if

(i) u is a distributional solution of (13);
(ii) for every convex function η ∈ C2(R) the entropy inequality (18) holds in the sense of dis-

tributions;
(iii) for every convex function η ∈ C2 with corresponding q defined by q ′(u) = uη′(u), the

boundary entropy condition

q
(
uτ

0(t)
) − q

(
g0(t)

) − η′(g0(t)
) (uτ

0(t))2 − (g0(t))
2

2

� 0 � q
(
uτ

1(t)
)− q

(
g1(t)

)− η′(g1(t)
) (uτ

1(t))2 − (g1(t))
2

2
(19)

holds for a.e. t ∈ (0, T ).

Our main result for the initial–boundary value problem for the Degasperis–Procesi equation
is the following theorem, which is proved in Section 4.

Theorem 1.3. Let u0, γ , g0, g1, h0, h1 satisfy (11). The initial–boundary value problem (8), (9),
(10) possesses a unique entropy solution u ∈ L∞((0, T ) × (0,1)).

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1, adapting Vasseur’s blow-up method [31].

2.1. Weak boundary trace

We first reformulate the relevant problems on local open subsets and construct weak boundary
traces of entropy solutions on these local sets. The reason for working on local subsets is that we
are going to use the blow-up method. We split the boundary into a countable number of subsets.
Indeed, for each x̂ ∈ ∂Ω , there exist rx̂ > 0, a C2 mapping γ̃x̂ : R

d−1 → R, and an isometry
for the Euclidean norm Rx̂ : R

d → R
d such that, upon rotating, relabeling, and translating the

coordinate axes if necessary,

Rx̂ (x̂) = 0,

Rx̂ (Ω) ∩ (−rx̂ , rx̂ )
d = {

y = (y0, ŷ) ∈ (−rx̂ , rx̂ )
d
∣∣ y0 > γ̃x̂(ŷ)

}
.

We have

∂Ω ⊂
⋃

x̂∈∂Ω

R−1
x̂

(
(−rx̂ , rx̂)

d
)
.
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Hence, for each ẑ = (t̂ , x̂) ∈ Γ , we obtain an isometry map Λẑ : R
d+1 → R

d+1 given by
Λẑ(t, x) = (y0, t − t̂ , ŷ), where (y0, ŷ) = Rx̂ (x). Then we have

Γ =
⋃
ẑ∈Γ

(Λẑ)
−1(Γẑ),

where

Γẑ = {
(y0, t − t̂ , y)

∣∣ y0 = γ̃x̂ (ŷ)
}
.

Let us denote w = (w0, ŵ) := (y0, t − t̂ , ŷ) and ŵ := (t − t̂ , ŷ). Since the above collection of
open sets is countable, ⋃

ẑ∈Γ

(Λẑ)
−1(Γẑ) =

⋃
α∈K

(Λα)−1(Γα),

where K is a countable set and

Γα = Λ−1
α

({
w ∈ (−rα, rα)d+1

∣∣ w0 = γα(ŵ)
})

,

where γα(ŵ) := γ̃α(ŷ). We define

Qα = {
w ∈ (−rα, rα)d+1

∣∣ w0 > γα(ŵ)
}
.

In an attempt to simplify the notation we write α instead of ẑα in the indices. From now
on we will work in Qα and state the equations in terms of the new w variable. To this
end, define uα :Qα → R by uα(w) = u((Λα)−1(w)) and set Aα(ξ) = Λα(ξ,A(ξ)), qα(ξ) =
Λα(η(ξ), q(ξ)). For every fixed α, every deformation ψ , and every ŵ ∈ (−rα, rα)d , we define

ψ̃(s, ŵ) = (Λα ◦ ψ)
(
s, (Λα)−1(γα(ŵ), ŵ

))
, s ∈ [0,1]. (20)

In terms of the w variable, (1) and (4) read respectively

divw Aα(uα) = S(w,uα) in Qα (21)

and

divw qα(uα) � η′(uα)S(w,uα) in Qα. (22)

We now introduce a kinetic formulation of (21) and (22), cf. [18]. To do so we set L =
‖u‖L∞(Ω), bring in a new variable ξ ∈ (−L,L), and introduce for every v ∈ (−L,L) the function

χ(v, ξ) =
{

1{0�ξ�v}, if v � 0,

−1{v�ξ�0}, if v < 0.

To effectively represent weak limits of nonlinear functions of weakly converging sequences, we
introduce new functions, called microscopic functions, which depend on ξ and on an additional
variable z [28].
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Definition 2.1. Let N be an integer and O be an open set of R
N . We say that f ∈

L∞(O × (−L,L)) is a microscopic function if it obeys 0 � sgn(ξ)f (z, ξ) � 1 for almost ev-
ery (z, ξ). We say that f is a χ -function if there exists a function u ∈ L∞(O) such that for
a.e. z ∈ O there holds f (z, ·) = χ(u(z), ·).

For later use, let us collect the following results (cf. [28]).

Lemma 2.1. Fix an open set O ⊂ R
N , and let fk ∈ L∞(O × (−L,L)) be a sequence of

χ -functions L∞
weak-�-converging to f ∈ L∞(O × (−L,L)). Introduce the functions uk(·) =∫ L

−L
fk(·, ξ) dξ and u(·) = ∫ L

−L
f (·, ξ) dξ . Then, for almost every z ∈ O, the function f (z, ·)

lies in BV (−L,L). Moreover, the following statements are equivalent:

• fk converges strongly to f in L1
loc(O × (−L,L)).

• uk converges strongly to u in L1
loc(O).

• f is a χ -function.

Observe that if f is a χ -function then u(z) = ∫ L

−L
f (z, ξ) dξ . The following theorem is due

to Lions, Perthame, and Tadmor [18].

Theorem 2.1. A function u ∈ L∞(Qα), with |u| � L, is a solution of (21) and (22) if and only if
there exists a non-negative measure m ∈ M+(Qα × (−L,L)) such that the related χ -function
f defined by f (u(w), ξ) = χ(u(w), ξ) for almost every (w, ξ) ∈ (Qα × (−L,L)) verifies

a(ξ) · ∇wf + S(·, ξ)
(
∂ξf − δ(ξ)

) = ∂ξm in D′(Qα × (−L,L)
)
, (23)

where a(ξ) := A′
α(ξ).

Denote a by a = (a0, â). To simplify the notation we keep denoting the normal vectors by ns

and n.
In what follows, for each fixed α, we will consider the set Qα and the χ -function f associated

to uα . For any regular deformation ψ and ŵ ∈ (−rα, rα)d we set

fψ(s, ŵ, ξ) = f
(
ψ̃(s, ŵ), ξ

)
,

where ψ̃ is defined in (20). We now show that fψ has a weak trace at s = 0, which does not
depend on the deformation ψ , i.e., the way chosen to reach the boundary.

Lemma 2.2. Let f be a solution of (23) in Qα × (−L,L). Then there exists

f τ ∈ L∞(
(−rα, rα)d × (−L,L)

)
such that

ess lim
s→0

fψ(s, ·,·) = f τ in H−1((−rα, rα)d × (−L,L)
)
,

for all Γα-regular deformation ψ . Moreover, f τ is uniquely defined.
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Proof. Since ‖fψ(s, ·,·)‖L∞ � 1, by weak compactness and the Sobolev imbedding theo-

rem, for every sequence sk k→∞−−−→ 0 there exist a subsequence kp
p→∞−−−→ ∞ and a function

gτ
ψ ∈ L∞((−rα, rα)d × (−L,L)) such that

fψ

(
skp , ·,·) p→∞−−−→ gτ

ψ in H−1 ∩ L∞
weak-�, (24)

for every regular deformation ψ . Let us show that gτ
ψ is independent of the deformation ψ and

the sequence sk and its subsequence skp . To do so, let us first consider the entropy flux

qη(w) =
L∫

−L

a(ξ)η′(ξ)f (w, ξ) dξ, (25)

associated with the entropy η. Multiplying (23) by η′(ξ) and integrating it with respect to ξ we
find

divw qη = −
L∫

−L

[
η′′(ξ)m1 − η′(ξ)m2

]
(w,dξ) ∈ M

(
(−rα, rα)d+1),

where

m1 = −Sf + m, m2 = ∂ξSf + δ(ξ)S. (26)

We can now use the following theorem (cf. Chen and Frid [3]):

Theorem 2.2. Let Ω be an open set with regular boundary ∂Ω and F ∈ [L∞(Ω)]d+1 be such
that divy F is a bounded measure. Then there exists F · n ∈ L∞(∂Ω) such that for every ∂Ω-
regular deformation ψ ,

ess lim
s→0

F
(
ψ(s, ·)) · ns(·) = F · n in L∞

weak-�(∂Ω),

where ns is a unit outward normal field of ψ({s} × ∂Ω).

This theorem ensures the existence of a function qτ
η · n ∈ L∞((−rα, rα)d), which does not

depend on ψ , such that

qη

(
ψ̃(s, ·)) · ns(·) s→0−−−→ qτ

η · n in D′((−rα, rα)d
)
, (27)

for every regular deformation ψ . The function ns converges strongly to n, i.e., the unit outward
normal to Qα . The convergence takes place in L1((−rα, rα)d). So, using (25) and (24), (27), we
obtain

∫
(−rα,rα)d

L∫
−L

ϕ(ŵ)η′(ξ)a(ξ) · n(ŵ)gτ
ψ(ŵ, ξ) dξ dŵ =

∫
(−rα,rα)d

qτ
η · n(ŵ)ϕ(ŵ) dŵ,



Author's personal copy

G.M. Coclite et al. / Journal of Functional Analysis 257 (2009) 3823–3857 3833

for every test functions ϕ ∈ D((−rα, rα)d). The right-hand side of this equation is independent
of ψ , the sequence sk and its subsequence skp , so gτ

ψ does not depend on those quantities either
thanks to (2). The result is obtained from the uniqueness of the limit. �
2.2. Strong boundary trace

Let us now show that entropy solutions possess a strong boundary trace. To do so we will
employ the blow-up method [31] and apply the averaging lemma to conclude that f τ (ŵ, ·) is
a χ -function for almost every (ŵ, ξ) ∈ (−rα, rα)d × (−L,L). To this end, we shall rely on the
following lemma, which is a straightforward consequence of Lemma 2.1.

Lemma 2.3. The function f τ is a χ -function if and only if

ess lim
s→0

fψ(s, ·,·) = f τ in L1
(
(−rα, rα)d

)
,

for any deformation ψ .

Let fix a specific deformation on Qα , namely

ψ̃0(s, ŵ) = (
s + γα(ŵ), ŵ

)
. (28)

We use the notation

f̃ (s, ŵ, ξ) = fψ̃0
(s, ŵ, ξ) = f

(
ψ̃0(s, ŵ), ξ

)
,

when we work with the deformation (28). Indeed, it is enough to show the strong trace of fψ for
the specific deformation (28) thanks to Lemma 2.2.

Notice that ψ̃0(s, ŵ) ∈ Qα if and only if ŵ ∈ (−rα, rα)d and 0 < s < rα . From (23) we find
that f̃ is a solution of

ã0(ŵ, ξ)∂s f̃ + â(ξ) · ∇ŵf̃ = ∂ξ m̃1 + m̃2, (29)

where m̃i(s, ŵ, ξ) = mi(ψ̃0(s, ŵ), ξ) with mi defined in (26), i = 1,2, and ã0(ŵ, ξ) =
λ(ŵ)a(ξ) · n(ŵ), where

λ(ŵ) := −
√

1 + ∣∣∇γα(ŵ)
∣∣2.

Before introducing the notion of rescaled solution, let us state two lemmas (cf. [31]).

Lemma 2.4. There exist a sequence δk which converges to 0 and a set E ⊂ (−rα, rα)d with
L((−rα, rα)d \ E) = 0 such that for every ŵ ∈ E and every R > 0,

lim
k→∞

1

δd
n

|m̃i |
(
(0,Rδk) × (

ŵ + (−Rδk,Rδk)
d
)× (−L,L)

) = 0, i = 1,2.
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Lemma 2.5. There exist a subsequence, still denoted by δk , and a subset E ′ of (−rα, rα)d with
E ′ ⊂ E , L((−rα, rα)d \ E ′) = 0, such that for every ŵ ∈ E ′ and every R > 0 there holds

lim
δk→0

L∫
−L

∫
(−R,R)d

∣∣f τ (ŵ, ξ) − f τ (ŵ + δkŷ, ξ)
∣∣dŷ dξ = 0,

lim
δk→0

L∫
−L

∫
(−R,R)d

∣∣ã0(ŵ, ξ) − ã0(ŵ + δkŷ, ξ)
∣∣dŷ dξ = 0.

Let us now introduce the localization method [31]. We use the notation

Qδ
α = (0, rα/δ) × (−rα/δ, rα/δ)d .

The goal is to show that for every ŵ ∈ E ′, f τ (ŵ, ·) is a χ -function. From now on we fix such
a ŵ ∈ E ′. Then we rescale the f̃ function by introducing a new function f̃δ , which depends on
new variables (s, ŷ) ∈ Qδ

α , defined by

f̃δ(s, ŷ, ξ) = f̃ (δs, ŵ + δŷ, ξ).

This function depends obviously on ŵ but since it is fixed throughout this section, we skip it in
the notation. The function f̃δ is still a χ -function and we notice that

f̃δ(0, ŷ, ξ) = f τ (ŵ + δŷ, ξ).

Hence we gain knowledge about f τ (ŵ, ·) by studying the limit of f̃δ when δ → 0. We define

ã0
δ (ŷ, ξ) = ã0(ŵ + δŷ, ξ).

In view of (29),

ã0
δ (ŷ, ξ)∂s f̃δ + â(ξ) · ∇ŷ f̃δ = ∂ξ m̃

1
δ + m̃2

δ , (30)

where m̃i
δ is the non-negative measure defined for every real numbers R

j

1 < R
j

2 , L1 < L2 by

m̃i
δ

( ∏
0�j�d

[
R

j

1 ,R
j

2

]× [L1,L2]
)

= 1

δd
m̃i

( ∏
0�j�d

[
ŵj + δR

j

1 , ŵj + δR
j

2

]× [L1,L2]
)

,

for i = 1,2.
We now pass to the limit when δ goes to 0 in the rescaled equation. To this end, we shall need

to prove strong convergence via an application of an averaging lemma taken from Perthame and
Souganidis [29].
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Lemma 2.6. Let N be an integer, fn bounded in L∞(RN+1) and {h1
n,h

2
n} be relatively compact

in [Lp(RN+1)]2N with 1 < p < +∞ solutions of the transport equation:

a(ξ) · ∇yfk = ∂ξ

(∇y · h1
k

)+ ∇y · h2
k,

where a ∈ [C2(R)]N verifies the non-degeneracy condition (2). Let φ ∈ D(R), then the average
u

φ
k (w) = ∫

R
φ(ξ)fk(w, ξ) dξ is relatively compact in Lp(RN).

Lemma 2.7. There exist a sequence δk → 0 and a χ -function f̃∞ ∈ L∞(R+ × R × (−L,L))

such that f̃δn converges strongly to f̃∞ in L1
loc(R

+ × R × (−L,L)) and

ã0(ŵ, ξ)∂s f̃∞ + â(ξ) · ∂ŵf̃∞ = 0. (31)

Proof. We consider the sequence δn of Lemma 2.5. By weak compactness, there exists a function
f̃∞ ∈ L∞(R+ × R

d × (−L,L)) such that, up to extraction of a subsequence, f̃δn converges to
f̃∞ in L∞

weak-�. Thanks to Lemma 2.4, m̃i
δn

converges to 0 in the sense of measures. So passing
to the limit in (30) gives (31).

First, we localize in (w, ξ). For any R > 0 big enough, we consider Φ1,Φ2 with values in
[0,1] such that Φ1 ∈ D(R+ × R

d), Φ2 ∈ D(R), and Supp(Φ1) ⊂ (1/(2R),2R) × (−2R,2R)d ,
Supp(Φ2) ⊂ (−2L,2L). Moreover, Φ1(w) = 1 for w ∈ (1/R,R)× (−R,R)d and Φ2(ξ) = 1 for
ξ ∈ (−L,L). Hence for δ < rα/(2R), we can define on R × R

d × R the function

f̃ R
δ = Φ1Φ2f̃δ,

(where f̃ R
δ = 0 if f̃δ is not defined). On (1/R,R) × (−R,R) × (−L,L) we have f̃ R

δ = f̃δ . So,
if we denote by aŵ(ξ) = (ã0(ŵ, ξ), â(ξ)) (which depends only on ξ since ŵ is fixed), from (30)
we get

aŵ(ξ) · ∇ŷ f̃
R
δ = ∂ξ

(
Φ1Φ2m̃

1
δ

)− Φ1Φ
′
2m̃

1
δ + aŵ(ξ) · ∇ŷΦ1Φ2f̃

R
δ + Φ1Φ2m̃

2
δ

+ ∂s

[(
ã0(ŵ, ξ) − ã0

δ (ŷ, ξ)
)
f̃ R

δ

]
= ∂ξμ1,δ + μ2,δ + ∂s

[(
ã0(ŵ, ξ) − ã0

δ (ŷ, ξ)
)
f̃ R

δ

]
,

where μ1,δk
and μ2,δk

are measures uniformly bounded with respect to k. In view of Lemma 2.5
we can see that ã0(ŵ, ξ) − ã0

δ (ŷ, ξ) converges to 0 in L1
loc(R

d × (−L,L)). So it converges to 0

in L
p

loc for every 1 � p < ∞ since these functions are bounded in L∞. Since the measures are
compactly imbedded in W−1,p for 1 � p < d+2

d+1 , we can apply Lemma 2.6 with N = d + 1,

fk = f̃ R
δk

, φ(ξ) = Φ2(ξ), and a(ξ) = aŵ(ξ). It follows that
∫

f̃ R
δ Φ2(ξ) dξ is compact in Lp for

1 � p < d+2
d+1 . So by uniqueness of the limit,

∫
f̃δn(·, ξ) dξ converges strongly to

∫
f̃∞(·, ξ) dξ in

L1
loc(R

d+1). Lemma 2.1 ensures us that f̃δn converges strongly to f̃∞ in L1
loc(R

d+1 × (−L,L))

and moreover that f̃∞ is a χ -function. �
We now turn to the characterization of the limit function f̃∞.
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Lemma 2.8. (See [31].) For every ŵ ∈ E ′, f̃∞(w, ξ) = f τ (ŵ, ξ) for almost every (w, ξ) ∈
R

d+1 × (−L,L), and the function f τ (ŵ, ·) is a χ -function.

Thus, from Propositions 2.3 and 2.8, we can prove Theorem 1.1.

Proof. [Proof of Theorem 1.1] For every α and every deformation ψ , we have

ess lim
s→0

∫
(−rα,rα)d

L∫
−L

∣∣fψ(s, ŵ, ξ) − f τ (ŵ, ξ)
∣∣dξ dŵ = 0.

We define uτ by

uτ (ẑ) =
L∫

−L

f τ (ŵ, ξ) dξ, if
(
γα(ŵ), ŵ

) = Λα(ẑ).

For every compact subset K of (0, T ) × ∂Ω , there exists a finite set I0 such that K ⊂ ⋃
α∈I0

and∫
K

∣∣u(ψ(s, ẑ)
)− uτ (ẑ)

∣∣dσ(ẑ) �
∑
α∈I0

∫
Γα

∣∣u(ψ(s, ẑ)
)− uτ (ẑ)

∣∣dσ(ẑ),

which converges to 0 as s tends to 0. This concludes the proof of Theorem 1.1. �
3. Proof of Theorem 1.2

3.1. Existence proof

In this section we will show the existence of an entropy solution for the initial–boundary value
problem (1), (5), and (6), with the boundary condition (6) interpreted in the sense of (7).

Let {Sε}ε>0 be a sequence of smooth functions converging in L1
loc to S with respect to vari-

ables (t, x), for example obtained by mollifying the function S, and consider smooth solutions
to the uniformly parabolic equation

∂tu
ε + divx A

(
uε

) = Sε
(
t, x, uε

)+ ε�xu
ε, (32)

with initial and boundary data

uε(0, ·) = u0 uε
∣∣
Γ

= ub. (33)

For the sake of simplicity in this proof, we will assume that the data u0, ub are smooth functions.
Then, for each ε > 0, the existence of a unique smooth solution of the initial–boundary (32), (33)
value problem is a standard result.

By the maximum principle,∣∣uε(t, x)
∣∣ � ‖u0‖L∞ + ‖ub‖L∞ + ‖S‖L∞T . (34)
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For any convex entropy function η and corresponding entropy flux function q with q ′ = η′A′,
multiplying (32) η′(uε) yields

∂tη
(
uε

)+ divx q
(
uε

)− η′(uε
)
Sε

(
t, x, uε

) = ε�xη
(
uε

)− εη′′(uε
)∣∣∇xu

ε
∣∣2. (35)

For any function ϕ ∈ C∞
c (Q), it follows from (35) that∫

Q

η
(
uε

)
∂tϕ + q

(
uε

) · ∇xϕ dt dx =
∫
Q

εη′(uε
)∇xu

ε · ∇xϕ dt dx +
∫
Q

η′′(uε
)
ε
∣∣∇xu

ε
∣∣2ϕ dt dx

−
∫
Q

Sε
(
t, x, uε

)
η′(uε

)
ϕ dt dx. (36)

Let K be an arbitrary compact subset of Q and choose in (36) a function ϕ ∈ C∞
c (Q) satisfying

ϕ|K = 1, 0 � ϕ � 1.

It follows that ∫
Q

∣∣Sε
(
t, x, uε

)
uεϕ

∣∣dt dx � C
(
T ,ϕ,‖u0‖L∞

)‖S‖L∞,

thanks to (34). Consequently, ∫
Q

ε
∣∣∇xu

ε
∣∣2 dt dx � C. (37)

We can now make obvious the strong convergence of solutions uε to (1). Set f ε(t, x, ξ) =
χ(uε, ξ), where uε is a solution of Eq. (1). Then

∂tf
ε + A′(ξ) · ∇xf

ε

=
d∑

j=1

∂xj

(
ε∂xj

uεδ
(
uε − ξ

))+ ∂ξ

(
ε
∣∣∇xu

ε
∣∣2δ(uε − ξ

))+ Sε(·,·, ξ)δ
(
uε − ξ

)

=:
d∑

j=1

∂xj
Γ ε

j + ∂ξΛ
ε
1 + Λε

2 in D′. (38)

For any σ ∈ C∞
c (R+ × R

d × R),

∣∣〈Λε
2, σ

〉∣∣ � ‖σ‖L∞
∫

supp(σ )

∣∣Sε
(
t, x, uε

)∣∣dt dx � C(T ,σ ). (39)
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Thus, Λε
2 is a bounded measure thanks to (39). Now, we may use the Sobolev injection to repre-

sent

Λε
2(t, x, ξ) = div(t,x,ξ) λ

ε
2(t, x, ξ), (40)

where λε
2(t, x, ξ) is compact in Lq(Rd+2) for some q > 1. Combining (40) and Lemma 3.1

below yields

∂tf
ε + A′(ξ) · ∇xf

ε =
d∑

j=1

∂xj

(
γj

ε + ∂ξγ
ε
j

)+ ∂ξ div(t,x,ξ) λ
ε
1 + div(t,x,ξ) λ

ε
2, (41)

where γj
ε , γ ε

j → 0 in L2 for j = 1, . . . , d and λε
i is bounded in W

1,q

loc for i = 1,2.

Lemma 3.1. (See [15].) Consider Γ ε
j and Λε

1 given in (38). Then

Γ ε
j = γj

ε + ∂ξ γ
ε
j and Λε

1 = div(t,x,ξ) λ
ε
1,

where γj
ε , γ ε

j → 0 in L2 for j = 1, . . . , d and λε
i is bounded in W

1,q

loc , i = 1,2.

By (34), (37), and (38), Lemma 2.6 applied to (41) shows that f ε converges strongly to
f in Lp(Q × R) for some p > 1. Let us set u = ∫

R
f dξ . We now conclude the existence of

subsequence, still labeled uε := ∫
R

f ε dξ , converging to a limit u a.e. and in L1
loc such that the

interior entropy inequality holds:∫
Q

η(u)∂tφ + q(u) · ∇xφ + η′(u)S(t, x,u)φ dt dx � 0, ∀φ ∈ C∞
c (Q), φ � 0.

It remains to prove that the Dubois–LeFloch boundary condition (7) is satisfied.

Lemma 3.2. Let u be the limit function constructed above. Then, for any convex entropy–entropy
flux pair (η, q),

[
q
(
uτ

)− q(ub) − η′(ub)
(
A
(
uτ

)− A(ub)
)] · n̂ � 0

where uτ is the trace of u on (0, T ) × ∂Ω and n̂ is the unit outward normal to ∂Ω .

Proof. We need a family of boundary layer functions {ζδ} ∈ C∞(Ω; [0,1]) verifying

ζδ|Ωδ = 0, ζδ|∂Ω = 1, and |∇ζ | � c

δd
,

where Ωδ = {x ∈ Ω | diam(x, ∂Ω) > δ} and c is a constant independent of δ. Multiplying (35)
by θ(t, x)ζδ(x) with θ ∈ C∞

c (Rd+1), θ � 0, we obtain E1 = E2, where the terms E1,E2 are
defined and analyzed below.
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Integration by parts yields

E1 :=
∫
Q

(
∂tη

(
uε

)+ divx q
(
uε

)− η′(uε
)
Sε

(
t, x, uε

))
θ(t, x)ζδ(x) dt dx

= −
∫
Q

η
(
uε

)
∂t θ(t, x)ζδ(x) + q

(
uε

) · ∇xζδ(x)θ(t, x) + q
(
uε

) · ∇xθ(t, x)ζδ(x)

+ η′(uε
)
Sε

(
t, x, uε

)
θ(t, x)ζδ(x) dt dx +

∫
(0,T )×∂Ω

q(ub) · n̂ θ(t, x̂) dt dσ

ε→0−→ −
∫
Q

η(u)∂t θ(t, x)ζδ(x) + q(u) · ∇xζδ(x)θ(t, x) + q(u) · ∇xθ(t, x)ζδ(x)

+ η′(u)S(t, x,u)θ(t, x)ζδ(x) dt dx +
∫

(0,T )×∂Ω

q(ub) · n̂ θ(t, x̂) dt dσ.

Observe that

∫
Q

q(u) · ∇xζδ(x)θ(t, x) dt dx
δ→0−−−→

T∫
0

∫
∂Ω

q
(
uτ

) · n̂ θ(t, x̂) dt dσ,

∫
Q

η′(u)S(t, x,u)θ(t, x)ζδ(x) dt dx
δ→0−−−→ 0,

∫
Q

η(u)∂t θ(t, x)ζδ(x) dt dx
δ→0−−−→ 0,

and ∫
Q

q
(
uε

) · ∇xθ(t, x)ζδ(x) dt dx
δ→0−−−→ 0.

As a result,

lim
δ→0

lim
ε→0

E1 =
∫

(0,T )×∂Ω

(
q(ub) − q

(
uτ

)) · n̂ θ dt dσ.

Next,

E2 := ε

∫
Q

η′(uε
)
�xu

εθ(t, x)ζδ(x) dt dx
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= ε

∫
Q

(
divx

(
η′(uε

)∇xu
ε
)− η′′(uε

)∣∣∇xu
ε
∣∣2)θ(t, x)ζδ(x) dt dx

� ε

∫
(0,T )×∂Ω

η′(ub)∇xu
ε · n̂ θ(t, x̂) dt dσ − ε

∫
Q

η′(uε
)∇xu

ε · ∇xζδ(x)θ(t, x) dt dx

− ε

∫
Q

η′(uε
)∇xu

ε · ∇xθ(t, x)ζδ(x) dt dx

=: E2,1 − E2,2 − E2,3.

Clearly, thanks to (37), limε→0 |E2,2| = limε→0 |E2,3| = 0.
To analyze E2,1, we repeat the above argument with η = Id to obtain the equation

lim
δ→0

lim
ε→0

[
ε

∫
(0,T )×∂Ω

∇xu
ε · n̂Θ dt dσ

]
=

∫
(0,T )×∂Ω

(
A
(
uτ

)− A(ub)
) · n̂Θ dt dσ, (42)

which holds for all Θ ∈ C∞
c (Rd+1). Since the boundary ∂Ω is smooth, we can regularize (by

mollification) ub on (0, T ) × ∂Ω ; let us denote the regularized function by u
ς
b . By taking Θ =

η′(uς
b )θ in (42) with θ � 0 and sending ς → 0, we obtain

lim
ε→0

lim
δ→0

E2,1 =
∫

(0,T )×∂Ω

η′(ub)
(
A
(
uτ

)− A(ub)
) · n̂θ dt dσ.

Hence, the limit u obeys the inequality

T∫
0

∫
∂Ω

[
q
(
uτ

)− q(ub) − η′(ub)
(
A
(
uτ

)− A(ub)
)] · n̂θ dσdt � 0.

By the arbitrariness of θ , the proof is complete. �
3.2. Uniqueness proof

In this section we prove the uniqueness part of Theorem 1.2, adapting the approach of
Perthame [27,28]. In what follows, we let u,v denote two entropy solutions of the conservation
law (1) with initial data u0, v0 ∈ L∞, respectively, and boundary data ub , with the boundary con-
dition (6) interpreted in the sense of (7). We start by rewriting the Dubois and LeFloch boundary
condition (7) in a kinetic form due to Kwon [16].

Lemma 3.3. The following two statements are equivalent:

1. For every convex entropy–entropy flux pair (η, q),[
q
(
uτ

)− q(ub) − η′(ub)
(
A
(
uτ

)− A(ub)
)] · n̂ � 0 on Γ .



Author's personal copy

G.M. Coclite et al. / Journal of Functional Analysis 257 (2009) 3823–3857 3841

2. There exists μ ∈ M+(Γ × (−L,L)) such that

A′(ξ) · n̂ [
f τ (ẑ, ξ) − χ

(
ξ ;ub(ẑ)

)]− δ(ξ=ub(ẑ))

(
A
(
uτ

)− A(ub)
) · n̂ = −∂ξμ(ẑ, ξ),

for every (ẑ, ξ) ∈ Γ × (−L,L).

Associated with the entropy solutions u and v we introduce the corresponding χ -functions f

and g defined by f (t, x, ξ) = χ(ξ ;u(t, x)) and g(t, x, ξ) = χ(ξ ;v(t, x)), respectively. In view
of Theorem 2.1, there exist m1,m2 ∈ M+(Q × (−L,L)) such that

∂tf + A′(ξ) · ∇xf + S(t, x, ξ)
(
∂ξf − δ(ξ)

) = ∂ξm
1,

∂tg + A′(ξ) · ∇xg + S(t, x, ξ)
(
∂ξg − δ(ξ)

) = ∂ξm
2. (43)

The goal is to show the following inequality for a.e. t ∈ (0, T ):

d

dt

∫
Ω

L∫
−L

∣∣f (t, x, ξ) − g(t, x, ξ)
∣∣2 dξ dx +

∫
∂Ω

L∫
−L

A′(ξ) · n̂ ∣∣f τ (t, x̂, ξ) − gτ (t, x̂, ξ)
∣∣2 dξ dσ(x̂)

� C

∫
Ω

∣∣S(t, x, u(t, x)
) − S

(
t, x, v(t, x)

)∣∣dx, (44)

where dσ denotes the volume element of ∂Ω and some constants C > 0.
To this end, we need to regularize f and g with respect to the t, x variables. Set ε = (ε1, ε2)

and define φε by

φε(t, x) = 1

ε1
φ1

(
t

ε1

)
1

εd
2

φ2

(
x

ε2

)
,

where φ1 ∈ C∞
c (R), φ2 ∈ C∞

c (Rd) verify φj � 0,
∫

φj = 1 for j = 1,2, and supp(φ1) ⊂ (−1,0).
We shall employ the following notations:

fε(t, x, ξ) = f (·,·, ξ)
(t,x)
� φε(t, x), gε(t, x, ξ) = g(·,·, ξ)

(t,x)
� φε(t, x),

m1
ε(t, x, ξ) = m1(·,·, ξ)

(t,x)
� φε(t, x), m2

ε(t, x, ξ) = m2(·,·, ξ)
(t,x)
� φε(t, x),

where � means convolution with respect to the indicated variables and the mappings f,g,m1,m2
are extended to R

d+1 by letting them take the value zero on R
d+1 \ Q.

The proof of the following lemma can be found in Perthame [27,28].

Lemma 3.4. Let m1 and m2 be non-negative measures given in the Theorem 2.1. Then, the
following holds

lim
ε→0

L∫
−L

m1
ε(·,·, ξ)δ(ξ=u) ∗ φε + m2

ε(·,·, ξ)δ(ξ=v) ∗ φεdξ = 0 in D′(Q).
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Let us continue with the proof of (44). Fix a ∂Ω-regular deformation ψ̂ , and let Ωs denote the
open subset of Ω whose boundary is ∂Ωs = ψ̂({s}× ∂Ω). Taking the convolution of each of the
two kinetic equations in (43) and then subtracting the resulting equations we obtain an equation
that is multiplied by fε − gε . The final outcome reads

∫
Ωs

L∫
−L

∂t

∣∣fε(t, x, ξ) − gε(t, x, ξ)
∣∣2 + A′(ξ) · ∇x

∣∣fε(t, x, ξ) − gε(t, x, ξ)
∣∣2 dξ dσs

+
∫
Ωs

L∫
−L

[
S(t, x, ξ)

(
∂ξ (f − g)

)] (t,x)
� φε(t, x)

(
fε(t, x, ξ) − gε(t, x, ξ)

)
dξ dσs

= 2
∫
Ωs

L∫
−L

∂ξ

(
m1

ε(t, x, ξ) − m2
ε(t, x, ξ)

)(
fε(t, x, ξ) − gε(t, x, ξ)

)
dξ dσs, (45)

for a.e. s > 0, where dσs denotes the volume element of ∂Ωs .
In view of Lemma 3.4, observe that for a.e. s > 0 we have

lim
ε→0

∫
Ωs

L∫
−L

∂ξ

(
m1

ε(·,·, ξ) − m2
ε(·,·, ξ)

)(
fε(·,·, ξ) − gε(·, ·, ξ)

)
dξ dσs

= − lim
ε→0

∫
Ωs

L∫
−L

(
m1

ε(·,·, ξ) − m2
ε(·,·, ξ)

)
∂ξ

(
fε(·,·, ξ) − gε(·,·, ξ)

)
dξ dσs

= − lim
ε→0

∫
Ωs

L∫
−L

m1
ε(·,·, ξ)δ(ξ=v)

(t,x)
� φε + m2

ε(·,·, ξ)δ(ξ=u)

(t,x)
� φε dξ dσs � 0.

Next, observe that

lim sup
ε→0

∣∣∣∣∣
∫
Ωs

L∫
−L

[
S(t, x, ξ)

(
∂ξ (f − g)

)] (t,x)
� φε(t, x)

(
fε(t, x, ξ) − gε(t, x, ξ)

)
dξ dx

∣∣∣∣∣
� 2

∫
Ωs

∣∣S(t, x,u) − S(t, x, v)
∣∣dx

� 2C

∫
Ωs

|u − v|dx, for a.e. s > 0,

where we have used condition (3) to derive the last inequality. Indeed, using |f | � 1 and |g| � 1,
we obtain |fε − gε | � 2 and we check that for a.e. (t, x) ∈ (0, T ) × Ω ,
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L∫
−L

[
S(t, x, ξ)

(
∂ξ (f − g)

)] (t,x)
� φε(t, x) dξ

ε→0−−−→ S(t, x, v) − S(t, x,u),

thanks to ∂ξ (f − g) = δ(ξ − v) − δ(ξ − u).
Let us now apply the divergence theorem in (45) and subsequently take the limits ε → 0 and

s → 0. Applying Theorem 1.1 and the observations above, we obtain the following inequality
for a.e. t ∈ (0, T ):

∫
Ω

L∫
−L

∂t

∣∣f (t, x, ξ) − g(t, x, ξ)
∣∣2 dξ dx +

∫
∂Ω

L∫
−L

A′(ξ) · n̂ ∣∣f τ (t, x̂, ξ) − gτ (t, x̂, ξ)
∣∣2 dξ dσ(x̂)

� 2
∫
Ω

∣∣S(t, x,u) − S(t, x, v)
∣∣dx. (46)

Next, we show that the “boundary” part of (46) is non-negative. According to Lemma 3.3,
there exist two measures μf ,μg ∈ M+(Γ × (−L,L)) corresponding to f and g, respectively,
verifying

A′(ξ) · n̂[f τ (ẑ, ξ) − χ
(
ub(ẑ); ξ

)]− δ(ξ=ub(ẑ))

(
A
(
uτ (ẑ)

)− A
(
ub(ẑ)

)) · n̂
= −∂ξμf (ẑ, ξ), for (ẑ, ξ) ∈ Γ × (−L,L),

A′(ξ) · n̂[gτ (ẑ, ξ) − χ
(
ub(ẑ); ξ

)]− δ(ξ=ub(ẑ))

(
A
(
vτ (ẑ)

)− A
(
ub(ẑ)

)) · n̂
= −∂ξμg(ẑ, ξ), for (ẑ, ξ) ∈ Γ × (−L,L), (47)

where ẑ means (t, x̂) and x̂ ∈ ∂Ω . For later use, we notice that the mappings ξ �→ μf (ẑ, ξ),
ξ �→ μg(ẑ, ξ) are continuous in L1(Γ ) away from ξ = ub .

For later use, observe that

A′ · n̂∣∣f τ − gτ
∣∣2

= A′ · n̂(f τ − χ(ub; ξ)
)

sgn(ξ − ub) − 2A′ · n̂(f τ − χ(ub; ξ)
)(

gτ − χ(ub; ξ)
)

+ A′ · n̂ (
gτ − χ(ub; ξ)

)
sgn(ξ − ub)

= A′ · n̂ (
f τ − χ(ub; ξ)

)[
sgn(ξ − ub) − gτ + χ(ub; ξ)

]
+ A′ · n̂ (

gτ − χ(ub; ξ)
)[

sgn(ξ − ub) − f τ + χ(ub; ξ)
]

=: A′ · n̂ (
f τ − χ(ub; ξ)

)
α(ẑ, ξ) + A′ · n̂ (

gτ − χ(ub; ξ)
)
β(ẑ, ξ), (48)

where sgn(·) denotes the sign function, sgn(0) = 0.
Combining (47) and (48) gives

∫
∂Ω

L∫
−L

A′(ξ) · n̂∣∣f τ (ẑ, ξ) − gτ (ẑ, ξ)
∣∣2 dξ dσ
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= lim
ε→0

∫
∂Ω

( ub−ε∫
−L

+
L∫

ub+ε

)
A′(ξ) · n̂ [

f τ (ẑ, ξ) − χ
(
ub(ẑ); ξ

)]
α(ẑ, ξ) dξ dσ

+ lim
ε→0

∫
∂Ω

( ub−ε∫
−L

+
L∫

ub+ε

)
A′(ξ) · n̂ [

gτ (ẑ, ξ) − χ
(
ub(ẑ); ξ

)]
β(ẑ, ξ) dξ dσ

= lim
ε→0

∫
∂Ω

( ub−ε∫
−L

+
L∫

ub+ε

)[−∂ξμf (ẑ, ξ)α(ẑ, ξ) − ∂ξμg(ẑ, ξ)β(ẑ, ξ)
]
dξ dσ

� lim inf
ε→0

Iε + lim inf
ε→0

Jε, (49)

where

Iε =
∫

∂Ω

( ub−ε∫
−L

+
L∫

ub+ε

)[−∂ξμf (ẑ, ξ)α(ẑ, ξ)
]
dξ dσ (50)

and

Jε =
∫

∂Ω

( ub−ε∫
−L

+
L∫

ub+ε

)[−∂ξμg(ẑ, ξ)β(ẑ, ξ)
]
dξ dσ. (51)

We claim that (49) is non-negative. Let us first prove that lim inf Iε � 0. To this end, we need
to write the exact form of α. In fact, since g(s, ·,·) → gτ in L1

loc as s → 0 and gτ = χ(vτ ; ξ),
we get gτ (ẑ, ξ) = χ(vτ (ẑ); ξ) for a.e. (ẑ, ξ) ∈ Γ × [−L,L] and thus it follows that α(ẑ, ξ) =
sgn(ξ − ub) − χ(vτ ; ξ) + χ(ub; ξ). More explicitly, we have the following cases to consider:

Case 1. ub > 0.

(1) If 0 < vτ � ub , then

α(ẑ, ξ) =
{1, if ξ > ub,

0, if vτ � ξ � ub,

−1 if ξ < vτ .

(2) If 0 < ub < vτ , then

α(ẑ, ξ) =
{1, if ξ > vτ ,

0, if ub � ξ � vτ ,

−1, if ξ < ub.

(3) If vτ � 0 < ub , then

α(ẑ, ξ) =
{1, if ξ > ub,

0, if vτ � ξ � ub,

−1, if ξ < vτ .
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Case 2. ub � 0.

(1) If ub � vτ � 0, then

α(ẑ, ξ) =
{1, if ξ > vτ ,

0, if ub � ξ � vτ ,

−1, if ξ < ub.

(2) If vτ < ub � 0, then

α(ẑ, ξ) =
{1, if ξ > ub,

0, if vτ � ξ � ub,

−1 if ξ < vτ .

(3) If ub � 0 < vτ , then

α(ẑ, ξ) =
{1, if ξ > vτ ,

0, if ub � ξ � vτ ,

−1, if ξ < ub.

Stated more compactly,

α(ẑ, ξ) =
⎧⎨⎩

1, if ξ > max{ub, v
τ },

0, if ξ ∈ [min{ub, v
τ },max{ub, v

τ }],
−1, if ξ < min{ub, v

τ },
(52)

for a.e. (ẑ, ξ) ∈ Γ × [−L,L]. Inserting (52) into (50) yields

Iε =
{∫

∂Ω
(μf (ẑ, vτ ) + μf (ẑ, ub − ε)) dσ, if vτ � ub,∫

∂Ω
(μf (ẑ, vτ ) + μf (ẑ, ub + ε)) dσ, if vτ < ub,

where we have taken into account that μf (ẑ,−L) = μf (ẑ,L) = 0. Therefore, we conclude that
lim inf Iε � 0. Similarly, we prove that lim infJε � 0, cf. (51).

Let us now conclude the proof of Theorem 1.2. Since the second term in (46) is non-negative,
Gronwall’s inequality implies that for each fixed τ ∈ (0, t)

∫
Ω

L∫
−L

∣∣f (t, x, ξ) − g(t, x, ξ)
∣∣2 dξ dx � exp(2CT )

∫
Ω

L∫
−L

∣∣f (τ, x, ξ) − g(τ, x, ξ)
∣∣2 dξ dx,

where C is given in (3).
Therefore, in view of Theorem 1.1, we can let τ → 0 to obtain∫

Ω

∣∣u(t, x) − v(t, x)
∣∣dx � exp(2CT )

∫
Ω

∣∣u0(x) − v0(x)
∣∣dx, for a.e. t ∈ (0, T ).

This concludes the proof of Theorem 1.2.
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4. IBVP for the Degasperis–Procesi equation

The purpose of this section is to prove Theorem 1.3. The main step of the proof relates to
the existence of an entropy solution. Our existence argument is based passing to the limit in a
vanishing viscosity approximation of (13).

Fix a small number ε > 0, and let uε = uε(t, x) be the unique classical solution of the follow-
ing mixed problem [4]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tuε + uε∂xuε + ∂xPε = ε∂2
xxuε, (t, x) ∈ (0, T ) × (0,1),

−∂2
xxPε + Pε = 3

2
u2

ε, (t, x) ∈ (0, T ) × (0,1),

uε(0, x) = uε,0(x), x ∈ (0,1),

uε(t,0) = gε,0(t), uε(t,1) = gε,1(t), t ∈ (0, T ),

∂xPε(t,0) = ψε,0(t), ∂xPε(t,1) = ψε,1(t), t ∈ (0, T ),

(53)

where uε,0, gε,0, gε,1 are C∞ approximations of u0, g0, g1, respectively, such that

gε,0(0) = uε,0(0), gε,1(0) = uε,0(1),

and

ψε,0 = −g′
ε,0 − gε,0hε,0, ψε,1 = −g′

ε,1 − gε,1hε,1. (54)

Due to (54) and the first equation in (53), we have that

∂2
xxuε(t,0) = ∂2

xxuε(t,1) = 0, t ∈ (0, T ). (55)

For our own convenience let us convert (53) into a problem with homogeneous boundary
conditions. To this end, we introduce the following notations:

ωε(t, x) = xgε,1(t) + (1 − x)gε,0(t), vε = uε − ωε,

Ωε(t, x) = x2

2
ψε,1(t) + 2x − x2

2
ψε,0(t), Vε = Pε − Ωε. (56)

Thanks to

ωε(t,0) = gε,0(t), ωε(t,1) = gε,1(t), t ∈ (0, T ),

∂xΩε(t,0) = ψε,0(t), ∂xΩε(t,1) = ψε,1(t), t ∈ (0, T ),

we have that

vε(t,0) = vε(t,1) = ∂xVε(t,0) = ∂xVε(t,1) = 0, t ∈ (0, T ). (57)

Moreover, due to the definition of ωε and (55)

∂2
xxωε(t, x) = ∂3

xxxΩε(t, x) = ∂2
xxvε(t,1) = ∂2

xxvε(t,0) = 0, (58)

for each t ∈ (0, T ) and x ∈ (0,1).
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Finally, in view of (53) and (58), we obtain

∂tvε + ∂tωε + uε∂xuε + ∂xPε = ε∂2
xxvε, (59)

−∂2
xxVε + Vε = 3

2
u2

ε + ∂2
xxΩε − Ωε. (60)

We are now ready to state and prove our key estimate.

Lemma 4.1. For each t ∈ (0, T ),

∥∥vε(t, ·)
∥∥2

L2(0,1)
+ 2εe2αε(t)

t∫
0

e−2αε(s)
∥∥∂xvε(s, ·)

∥∥2
L2(0,1)

ds

� 4
∥∥vε(0, ·)∥∥2

L2(0,1)
e2αε(t) + 8e2αε(t)

t∫
0

e−2αε(s)βε(s) ds, (61)

where

αε(t) = C0

(
t +

t∫
0

(∣∣gε,0(s)
∣∣+ ∣∣gε,1(s)

∣∣)ds

)
, (62)

βε(t) = C0
(∣∣g′

0,ε(t)
∣∣2 + ∣∣g′

1,ε(t)
∣∣2 + ∣∣h0,ε(t)g0,ε(t)

∣∣2 + ∣∣h1,ε(t)g1,ε(t)
∣∣2

+ ∣∣g0,ε(t)
∣∣3 + ∣∣g1,ε(t)

∣∣3), (63)

and C0 > 0 is a positive constant independent on ε.
In particular, the families

{uε}ε>0, {√ε∂xuε}ε>0

are bounded in L∞(0, T ;L2(0,1)) and L2((0, T ) × (0,1)), respectively.

Proof. Following [5] we introduce the quantity θε = θε(t, x) solving the following elliptic prob-
lem: {−∂2

xxθε + 4θε = vε(t, x), x ∈ (0,1),

θε(t,0) = θε(t,1) = 0, t ∈ (0, T ).
(64)

Our motivation for bringing in (64) comes from the fact that, in the case of homogeneous bound-
ary conditions, the quantity

1∫
0

vε

(
θε − ∂2

xxθε

)
dx
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is conserved by (8) when ε = 0 (see [10]). Thanks to (64) we have∥∥θε(t, ·)
∥∥

H 2(0,1)
�

∥∥vε(t, ·)
∥∥

L2(0,1)
� 4

∥∥θε(t, ·)
∥∥

H 2(0,1)
,∥∥∂xθε(t, ·)

∥∥
H 2(0,1)

�
∥∥∂xvε(t, ·)

∥∥
L2(0,1)

� 4
∥∥∂xθε(t, ·)

∥∥
H 2(0,1)

. (65)

Indeed, squaring both sides of (64),

v2
ε = (

∂2
xxθε

)2 − 8θε∂xθε + 16θ2
ε

and integrating over (0,1),

1∫
0

v2
ε dx =

1∫
0

[(
∂2
xxθε

)2 + 8(∂xθε)
2 + 16θ2

ε

]
dx + 8[θε∂xθε]1

0

=
1∫

0

[(
∂2
xxθε

)2 + 8(∂xθε)
2 + 16θ2

ε

]
dx.

Since

1∫
0

[(
∂2
xxθε

)2 + (∂xθε)
2 + θ2

ε

]
dx �

1∫
0

[(
∂2
xxθε

)2 + 8(∂xθε)
2 + 16θ2

ε

]
dx

� 16

1∫
0

[(
∂2
xxθε

)2 + (∂xθε)
2 + θ2

ε

]
dx,

we have the first line of (65). For the second line in (65), since

∂2
xxθε(t,0) = ∂2

xxθε(t,1) = 0 (cf. (57)),

we can argue in the same way.
We multiply (59) by θε − ∂2

xxθε and then integrate the result over (0,1), obtaining

1∫
0

∂tvε

(
θε − ∂2

xxθε

)
dx

︸ ︷︷ ︸
A1

+
1∫

0

∂tωε

(
θε − ∂2

xxθε

)
dx

︸ ︷︷ ︸
A2

+
1∫

0

uε∂xuε

(
θε − ∂2

xxθε

)
dx

︸ ︷︷ ︸
A3

+
1∫

0

∂xPε

(
θε − ∂2

xxθε

)
dx

︸ ︷︷ ︸
A4

= ε

1∫
0

∂2
xxvε

(
θε − ∂2

xxθε

)
dx

︸ ︷︷ ︸
A5

. (66)
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Thanks to (57) and (64),

A1 =
1∫

0

∂t

(
4θε − ∂2

xxθε

)(
θε − ∂2

xxθε

)
dx

=
1∫

0

(
4∂t θεθε − 4∂t θε∂

2
xxθε − ∂3

txxθεθε + ∂3
txxθε∂

2
xxθε

)
dx

=
1∫

0

(
4∂t θεθε + 5∂2

txθε∂xθε + ∂3
txxθε∂

2
xxθε

)
dx − [

4∂t θε∂xθε + ∂2
txθεθε

]1
0

= 1

2

d

dt

1∫
0

(
4θ2

ε + 5(∂xθε)
2 + (

∂2
xxθε

)2)
dx = 1

2

d

dt

∥∥θε(t, ·)
∥∥2

H̃ 2(0,1)
, (67)

where

‖f ‖H̃ 2(0,1) =
√

4‖f ‖2
L2(0,1)

+ 5‖f ′‖2
L2(0,1)

+ ‖f ′′‖2
L2(0,1)

.

The Hölder inequality, (11), and (56) guarantee that

A2 �
1∫

0

(∂tωε)
2 dx + 1

2

1∫
0

θ2
ε dx + 1

2

∫ (
∂2
xxθε

)2
dx

� 2
(∣∣g′

0,ε(t)
∣∣2 + ∣∣g′

1,ε(t)
∣∣2)+ 1

2

∥∥θε(t, ·)
∥∥2

H̃ 2(0,1)
. (68)

In light of (56), (57), and (60),

A4 =
1∫

0

(
∂xVεθε − ∂xVε∂

2
xxθε + ∂xΩεθε − ∂xΩε∂

2
xxθε

)
dx

=
1∫

0

(
∂xVεθε + ∂2

xxVε∂xθε + ∂xΩεθε − ∂xΩε∂
2
xxθε

)
dx − [∂xVε∂xθε]1

0

=
1∫

0

(
∂x

(
Vε − ∂2

xxVε

)
θε + ∂xΩεθε − ∂xΩε∂

2
xxθε

)
dx + [

∂2
xxVεθε

]1
0

=
1∫

0

(
3uε∂xuεθε − ∂xΩε∂

2
xxθε

)
dx.
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Therefore

A3 + A4 =
1∫

0

(
uε∂xuε

(
4θε − ∂2

xxθε

)− ∂xΩε∂
2
xxθε

)
dx

=
1∫

0

(
uε∂xuεvε − ∂xΩε∂

2
xxθε

)
dx

=
1∫

0

(
u2

ε∂xuε − uε∂xuεωε − ∂xΩε∂
2
xxθε

)
dx

=
1∫

0

(
u2

ε

2
∂xωε − ∂xΩε∂

2
xxθε

)
dx +

[
u3

ε

3
− u2

ε

2
ωε

]1

0

� |g0,ε(t)| + |g1,ε(t)|
2

1∫
0

u2
ε dx + 1

2

1∫
0

(
∂2
xxθε

)2
dx + 1

2

1∫
0

(∂xΩε)
2 dx

+ |g0,ε(t)|3 + |g1,ε(t)|3
6

� c1
(∣∣g0,ε(t)

∣∣+ ∣∣g1,ε(t)
∣∣+ 1

)∥∥θε(t, ·)
∥∥2

H̃ 2(0,1)

+ c1
(∣∣ψ0,ε(t)

∣∣2 + ∣∣ψ1,ε(t)
∣∣2 + ∣∣g0,ε(t)

∣∣3 + ∣∣g1,ε(t)
∣∣3)

� c1
(∣∣g0,ε(t)

∣∣+ ∣∣g1,ε(t)
∣∣+ 1

)∥∥θε(t, ·)
∥∥2

H̃ 2(0,1)

+ c1
(∣∣g′

0,ε(t)
∣∣2 + ∣∣g′

1,ε(t)
∣∣2 + ∣∣h0,ε(t)g0,ε(t)

∣∣2 + ∣∣h1,ε(t)g1,ε(t)
∣∣2

+ ∣∣g0,ε(t)
∣∣3 + ∣∣g1,ε(t)

∣∣3), (69)

for some constant c1 > 0 that is independent on ε.
By observing that (57) and (64) furnish

∂2
xxθε(t,0) = ∂2

xxθε(t,1) = 0, t ∈ (0, T ),

we achieve

A5 = ε

1∫
0

∂2
xx

(
4θε − ∂2

xxθε

)(
θε − ∂2

xxθε

)
dx

= ε

1∫
0

(
4∂2

xxθεθε − 4
(
∂2
xxθε

)2 − ∂4
xxxxθεθε + ∂4

xxxxθε∂
2
xxθε

)
dx
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= ε

1∫
0

(−4(∂xθε)
2 − 4

(
∂2
xxθε

)2 + ∂3
xxxθε∂xθε − (

∂3
xxxθε

)2)
dx

+ ε
[
4∂xθεθε − ∂3

xxxθεθε + ∂3
xxxθε∂

2
xxθε

]1
0

= −ε

1∫
0

(
4(∂xθε)

2 + 5
(
∂2
xxθε

)2 + (
∂3
xxxθε

)2)
dx + ε

[
∂2
xxθε∂xθε

]1
0

= −ε
∥∥∂xθε(t, ·)

∥∥2
H̃ 2(0,1)

. (70)

In view of (67), (68), (69), and (70), it follows from (66) that

d

dt

∥∥θε(t, ·)
∥∥2

H̃ 2(0,1)
+ 2ε

∥∥∂xθε(t, ·)
∥∥2

H̃ 2(0,1)

� c2
(∣∣g0,ε(t)

∣∣+ ∣∣g1,ε(t)
∣∣+ 1

)∥∥θε(t, ·)
∥∥2

H̃ 2(0,1)

+ c2
(∣∣g′

0,ε(t)
∣∣2 + ∣∣g′

1,ε(t)
∣∣2 + ∣∣h0,ε(t)g0,ε(t)

∣∣2 + ∣∣h1,ε(t)g1,ε(t)
∣∣2

+ ∣∣g0,ε(t)
∣∣3 + ∣∣g1,ε(t)

∣∣3), (71)

for some constant c2 > 0 that is independent on ε.
Using the notations introduced in (62) and (63), inequality (71) becomes

d

dt

∥∥θε(t, ·)
∥∥2

H̃ 2(0,1)
+ 2ε

∥∥∂xθε(t, ·)
∥∥2

H̃ 2(0,1)
� α′

ε(t)
∥∥θε(t, ·)

∥∥2
H̃ 2(0,1)

+ βε(t),

and hence, thanks to the Gronwall lemma,

∥∥θε(t, ·)
∥∥2

H̃ 2(0,1)
+ 2εeαε(t)

t∫
0

e−αε(s)
∥∥∂xθε(s, ·)

∥∥2
H̃ 2(0,1)

ds

�
∥∥θε(0, ·)∥∥2

H̃ 2(0,1)
eαε(t) + 2eαε(t)

t∫
0

e−αε(s)βε(s) ds. (72)

Clearly, via (65), the desired claim (61) follows from (72).
The boundedness of the families {uε}ε>0, {√ε∂xuε}ε>0 follows from the definition of the

auxiliary variable vε in (56) and assumption (11). �
We continue with some a priori bounds that come directly from the energy estimate stated in

Lemma 4.1.

Lemma 4.2. The families {Vε}ε>0, {Pε}ε>0 are both bounded in

L∞(
0, T ;W 2,1(0,1)

)∩ L∞(
0, T ;W 1,∞(0,1)

)
.

In particular, these families are bounded in L∞((0, T ) × (0,1)).
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Proof. To simplify the notation, let us introduce the quantity

fε = 3

2
u2

ε + ∂2
xxΩε − Ωε.

From (57) and (60),

−∂2
xxVε + Vε = fε, ∂xVε(t,0) = ∂xVε(t,1) = 0.

Using the function

G(x,y) =
{

ex+e−x

2
ey−1+e1−y

e−e−1 , if 0 � x � y � 1,
ey+e−y

2
ex−1+e1−x

e−e−1 , if 0 � y � x � 1,

which is the Green’s function of the operator 1 − ∂2
xx on (0,1) with homogeneous Neumann

boundary conditions at x = 0,1, we have the formulas

Vε(t, x) =
1∫

0

G(x,y)fε(t, y) dy, ∂xVε(t, x) =
1∫

0

∂xG(x, y)fε(t, y) dy. (73)

Since G � 0 and G,∂xG ∈ L∞((0,1) × (0,1)), we can estimate as follows:

∣∣Vε(t, x)
∣∣ �

1∫
0

G(x,y)
∣∣fε(t, y)

∣∣dy � ‖G‖L∞((0,1)2)

∥∥f (t, ·)∥∥
L1(0,1)

,

∣∣∂xVε(t, x)
∣∣ �

1∫
0

∣∣∂xG(x, y)
∣∣∣∣fε(t, y)

∣∣dy � ‖∂xG‖L∞((0,1)2)

∥∥f (t, ·)∥∥
L1(0,1)

,

∥∥∂2
xxVε(t, ·)

∥∥
L1(0,1)

�
∥∥Vε(t, ·)

∥∥
L1(0,1)

+ ∥∥fε(t, ·)
∥∥

L1(0,1)
.

Thanks to Lemma 4.1, we conclude that the desired bounds on {Vε}ε>0 hold.
Finally, the bounds on {Pε}ε>0 follow from the bounds on {Vε}ε>0 and (11). �
Using the previous lemma we can bound uε and vε in L∞ (cf. [7, Lemma 4]).

Lemma 4.3. For every t ∈ (0, T ),

∥∥uε(t, ·)
∥∥

L∞(0,1)
� ‖u0‖L∞(0,1) + ‖g0‖L∞(0,T ) + ‖g1‖L∞(0,T ) + CT t,

for some constant CT > 0 depending on T but not on ε.
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Proof. Due to (53) and Lemma 4.2,

∂tuε + uε∂xuε − ε∂2
xxuε � sup

ε>0
‖∂xPε‖L∞((0,T )×(0,1)) � CT .

Since the map

f (t) := ‖u0‖L∞(0,1) + ‖g0‖L∞(0,T ) + ‖g1‖L∞(0,T ) + CT t, t ∈ (0, T ),

solves the equation

df

dt
= CT

and

uε(0, x), g0(t), g1(t) � f (t), (t, x) ∈ (0, T ) × (0,1),

the comparison principle for parabolic equations implies that

uε(t, x) � f (t), (t, x) ∈ (0, T ) × (0,1).

In a similar way we can prove that

uε(t, x) � −f (t), (t, x) ∈ (0, T ) × (0,1).

This concludes the proof of the lemma. �
As a consequence of Lemmas 4.2 and 4.3, the second equation in (53) yields.

Lemma 4.4. The families {Vε}ε>0, {Pε}ε>0 are bounded in L∞(0, T ;W 2,∞(0,1)).

Let us continue by proving the existence of a distributional solution to (8), (9), (10) satisfying
(18).

Lemma 4.5. There exists a function u ∈ L∞((0, T ) × (0,1)) that is a distributional solution of
(13) and satisfies (18) in the sense of distributions for every convex entropy η ∈ C2(R).

We construct a solution by passing to the limit in a sequence {uε}ε>0 of viscosity approxima-
tions (53). We use the compensated compactness method [30].

Lemma 4.6. There exist a subsequence {uεk
}k∈N of {uε}ε>0 and a limit function u ∈ L∞((0, T )×

(0,1)) such that

uεk
→ u a.e. and in Lp

(
(0, T ) × (0,1)

)
, 1 � p < ∞. (74)
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Proof. Let η : R → R be any convex C2 entropy function, and let q : R → R be the correspond-
ing entropy flux defined by q ′(u) = η′(u)u. By multiplying the first equation in (53) with η′(uε)

and using the chain rule, we get

∂tη(uε) + ∂xq(uε) = ε∂2
xxη(uε)︸ ︷︷ ︸
=:L1

ε

− εη′′(uε)(∂xuε)
2 + η′(uε)∂xPε︸ ︷︷ ︸

=:L2
ε

,

where L1
ε , L2

ε are distributions. By Lemmas 4.1–4.4,

L1
ε → 0 in H−1((0, T ) × (0,1)

)
,

L2
ε is uniformly bounded in L1

(
(0, T ) × (0,1)

)
. (75)

Therefore, Murat’s lemma [22] implies that{
∂tη(uε) + ∂xq(uε)

}
ε>0 lies in a compact subset of H−1

loc

(
(0, T ) × (0,1)

)
. (76)

The L∞ bound stated in Lemma 4.3, (76), and the Tartar’s compensated compactness
method [30] give the existence of a subsequence {uεk

}k∈N and a limit function u ∈ L∞((0, T ) ×
(0,1)) such that (74) holds. �
Lemma 4.7. We have

Pεk
→ P u in Lp

(
0, T ;W 1,p(0,1)

)
, 1 � p < ∞, (77)

where the sequence {εk}k∈N and the function u are constructed in Lemma 4.6.

Proof. Using the integral representation of Vεk
stated in (73), Lemma 4.3, and arguing as in [5,

Theorem 3.2], we get∥∥Pεk
− P u

∥∥
Lp(0,T ;W 1,p(0,1))

� C
(‖uεk

− u‖Lp((0,T )×(0,1)) + ‖ψεk,1 − ψ1‖Lp(0,T ) + ‖ψεk,0 − ψ0‖Lp(0,T )

)
,

for every 1 � p < ∞ and some constant C > 0 depending on u0, g0, g1, but not on ε. Therefore
Lemma 4.6 gives (77). �
Proof of Lemma 4.5. Fix a test function φ ∈ C∞

c ([0, T ) × [0,1]). Due to (53)

T∫
0

1∫
0

(
uε∂tφ + u2

ε

2
∂xφ − ∂xPεφ + εuε∂

2
xxφ

)
dx dt +

1∫
0

u0,ε(x)φ(0, x) dx

+
T∫

0

g0,ε(t)φ(t,0) dt −
T∫

0

g1,ε(t)φ(t,1) dt = 0.



Author's personal copy

G.M. Coclite et al. / Journal of Functional Analysis 257 (2009) 3823–3857 3855

Therefore, by the assumptions on u0,ε , g0,ε , g1,ε and Lemmas 4.6, 4.7, we conclude that the
function u constructed in Lemma 4.6 is a distributional solution of (13).

Finally, we have to verify that the distributional solution u satisfies the entropy inequality
stated in (18). Let η ∈ C2(R) be a convex entropy. The convexity of η and (53) yield

∂tη(uε) + ∂xq(uε) + η′(uε)∂xPε � ε∂2
xxη(uε).

Therefore, (18) follows from Lemmas 4.6 and 4.7. �
We are now ready for the proof of Theorem 1.3.

Proof of Theorem 1.3. Since, thanks to Lemma 4.5, u ∈ L∞((0, T ) × (0,1)) is a distributional
solution of the problem

⎧⎨⎩
∂tu + u∂xu = −∂xP

u, (t, x) ∈ (0, T ) × (0,1),

u(0, x) = u0(x), x ∈ (0,1),

u(t,0) = g0(t), u(t,1) = g1(t), t ∈ (0, T ),

(78)

that satisfies the entropy inequalities (18), Theorem 1.1 tells us that the limit u admits strong
boundary traces uτ

0 , uτ
1 at (0, T ) × {x = 0}, (0, T ) × {x = 1}, respectively. Since, arguing as in

Section 3.1 (indeed our solution is obtained as the vanishing viscosity limit of (78)), Lemma 3.2
and the boundedness of the source term ∂xP

u (cf. (17)) imply (19).
Finally, we have to prove the uniqueness of the entropy solution to (8), (9), (10). To this end,

let u1, u2 be two entropy solutions. We have to prove that

u1 = u2 a.e. in (0, T ) × (0,1). (79)

Since u1 and u2 are entropy solutions of (78), we can slightly modify the arguments in Subsec-
tion 3.2 to account for two different (nonlocal) source terms S1 := ∂xP

u1 and S2 := ∂xP
u2 , or

apply the result of [1, Corollary 2.6], to assemble the inequality

∥∥u1(t, ·) − u2(t, ·)
∥∥

L1(0,1)
� c

∥∥∂xP
u1 − ∂xP

u2
∥∥

L1((0,t)×(0,1))
, (80)

for t ∈ (0, T ) and a constant c. Moreover, (16) says that

∂xP
u1 (t, x) − ∂xP

u2(t, x) = 3

2

1∫
0

∂xG(x, y)
(
u1(t, y) + u2(t, y)

)(
u1(t, y) − u2(t, y)

)
dy.

Hence, by Lemma 4.3 and (80),

∥∥u1(t, ·) − u2(t, ·)
∥∥

L1(0,1)
� C‖u1 − u2‖L1((0,t)×(0,1)), t ∈ (0, T ),

for some constant C > 0. Therefore, (79) follows from Gronwall’s lemma. �
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